Solars: Difference between revisions

From Yogstation-13
Jump to navigation Jump to search
No edit summary
(removes old SMES information after a PR fixed charging)
Line 82: Line 82:


'''Why is this important?''' Because of the battery! See that big white thing in the solar control room? That's the SMES cell. It's a battery used for holding solar energy and transferring it to the station. Click on the battery and you get a window with input, output, and charging options.   
'''Why is this important?''' Because of the battery! See that big white thing in the solar control room? That's the SMES cell. It's a battery used for holding solar energy and transferring it to the station. Click on the battery and you get a window with input, output, and charging options.   
===Important SMES Facts===
# The SMES doesn't charge if the input setting is higher than the actual amount of power being received!
# If the SMES charge drops to 0% the battery will stop sending power.
A common mistake is to immediately set the input to 90,000 watts (the amount produced by full sunlight) and the output to 80,000 watts. However, '''this will not work'''. Solar batteries (SMES cells) start at 20% power but if the engine is off the station drains them to 0% in a few minutes. An input of 90,000 watts (full sun) might charge the battery for a little while, but once the sunlight is blocked by the station the battery charge begins to drain. This causes the battery to turn off and even when the panels receive sunlight again, the battery won't be sending power unless an engineer turns it on again.


===Skipping the SMES Cells===
===Skipping the SMES Cells===

Revision as of 13:38, 24 August 2020

Solar Arrays
link=File:Solars.png}}
Wire the solars, you lazy bums!
Purpose: Powers the station by capturing sun rays.
Key items: Solar Control Computer, SMES Cell
Workers: Chief Engineer, Engineer
Access: Captain, Chief Engineer, Engineer
Exits: North/East/South to the Solar Control Room (depending on the solar array you're on), Space
Engineering


What are the solars?

The solars are an alternative power source that are often fully neglected by but a few people, and for slightly dangerous reasons (covered in a lower section). However, they are the safest way to generate power for the whole station! They do great work too, for example if there was a black out of power already, they will always have power until hooked up, and can provide the engine APC a charge until it is set up itself.

Locations

There are four solar arrays on the station.

Port Bow

The first solar array is located on the leftmost side of the station, just above the Garden. It is best accessed through the maintenance airlock in Auxiliary Tool Storage and then going north-west until you find it.

Starboard Bow

The second solar array is located on the right side of the station, above Hydroponics. It is best accessed through the maintenance airlock in the Library and then going north to the wall, and then west.

Starboard Quarter

The third solar array is located on the rightmost side of the station, below the Escape Shuttle Hallway. It is best accessed through the maintenance airlock in the Escape Shuttle Hallway and then going as far south as possible.

Port Quarter

The fourth solar array is located on the left side of the station, west of Engineering. It is best accessed through the maintenance airlock south of Aft Primary Hallway (outside engineering) and then going as far west as possible.

Setting up Solars

Replacing Missing Panels

On Boxstation, you will notice a few solar panels will start out missing. You can find replacements for these in a crate inside Engineering, or you can order more from Cargo Bay. The solars will work with missing panels, but will produce less power.

Connecting the Arrays

Nanotrasen engineers are renowned for their shoddy craftsmanship and poor work ethic. You will find that none of the four solar arrays have been connected to the station. You will need to connect the solar panels and the solar tracker to the wire leading from the station. To wire a tile, hold a cable coil in hand and click an adjacent tile, this will add a wire radiating from the center of the selected tile toward your current position. Using this method, connect the solar arrays and solar tracker to the station. Having excessive knotting in your wiring can sometimes cause power loss and metaphysical anomalies, so avoid it!

See here for a wiring example:
Wiring.gif

You need:

Optional:

  • Crowbar.png A crowbar to open doors if the power is out
  • Floor Tiles.png Floor tiles so as to protect your newly placed wiring from easy tampering

Calibrating the Arrays

Once you have wired an array, you need to calibrate the tracking and power so that it actually produces energy. Apparently, our space station is rotating or in orbit around something (no one really knows for sure). This means that the solar panels need to constantly rotate to face toward the sun. Click on the File:Solars Control.png Solar Control CPU, press refresh then set it to auto-tracking. You should see a degree displayed at the top ranging from 0 to 359; this is the current direction of the sun.

  • 0 degrees = North
  • 90 degrees = East
  • 180 degrees = South
  • 270 degrees = West

Auto rotation is not smooth, it jumps about every 20 seconds. Keep this in mind if it seems like nothing is happening. The consoles are a bit glitchy so you might have to turn off auto-tracking then turn it on again before the panels start to rotate. You don't need to use manual tracking unless a meteor or traitor destroys the tracking unit.

Setting up the SMES

After you have wired the array, set tracking to auto, and verified that the panels are indeed rotating, set the battery like so:

Charging: Auto

Input: 80,000 watts

Output: OFF!!

You want to leave output off and let the battery charge before you send the power to the station. It is recommended to wait for a charge of at least 10% before you turn on the output. The battery needs this charge to provide sustained power during the dark phase of the solar rotation. If the battery runs out of charge, you'll have to turn it on again or it will not provide power. While you wait for the battery to charge, you can wire up other solar arrays on the station.

Once the battery has some charge, you can set the output to 50,000 - 75,000 depending on how much power you need. (If the output load is equal to the output value you set, it means the station needs more power than it's getting. Crank it up!)

These four arms can provide enough energy to power the entire ship in the event of a singularity engine failure. But, given the position to the engine, the wires will likely be eaten away and you will have charging solars that aren't connected to the station.

Other Information

It is important to note that the station blocks sunlight. This is the biggest cause of solar fail known to spessmen. When the panels of an array face the sun (and are correctly wired) they produce about 90,000 Watts of power. However, if the station is between the panels and the sun, they produce 0 Watts of power. This means that as the panels rotate with auto-tracking, they move through a series of power levels ranging from 90k (full sun) to nothing (station obscures sun). The rotation cycle takes roughly 5 minutes to complete.

Why is this important? Because of the battery! See that big white thing in the solar control room? That's the SMES cell. It's a battery used for holding solar energy and transferring it to the station. Click on the battery and you get a window with input, output, and charging options.

Skipping the SMES Cells

If you don't feel like configuring the SMES cells, you can optionally reroute the wiring and skip the whole battery setup! Just recognize two wires: The wire coming from the Solar Control CPU and going to the SMES cell, and the other wire coming from the SMES cell and going to the station power grid. Connect these two wires and voilá! You have skipped the SMES cell and saved yourself a lot of time. No need to turn that pesky SMES on at all, just configure the Solar Control CPU and you're done, time to move to the next set of solars!

BUT there is one big downside to this: the station powergrid now holds about 400 kW of power, which is almost enough to put someone into instant crit. Not a good thing if you have shocked doors or someone exposes those electrified grilles inside windows.

DANGER WILL ROBINSON

There are a few dangers on the solars, one being the electrical wires if you forgot to wear insulated gloves: Never forget or you will get zapped! In addition, you are vulnerable and alone. This leaves you an easy target for those pesky space carps and space-walking attackers that need a new cover identity. Finally, there is the chance to misstep and go drifting off through space. This hazard is easily solved if you act quickly. Simply throw something in the direction of your flight path, like shoes, or a pen. The equal and opposite reaction will start pushing you in the other direction!

Solar Arrays
link=File:Solars.png}}
Wire the solars, you lazy bums!
Purpose: Powers the station by capturing sun rays.
Key items: Solar Control Computer, SMES Cell
Workers: Chief Engineer, Engineer
Access: Captain, Chief Engineer, Engineer
Exits: North/South to the Solar Control Room (depending on the solar array you're on), Space
Engineering


What are the solars?

The solars are an alternative power source that are often fully neglected by but a few people, and for slightly dangerous reasons (covered in a lower section). However, they are the safest way to generate power for the whole station! They do great work too, for example if there was a black out of power already, they will always have power until hooked up, and can provide the engine APC a charge until it is set up itself.

Locations

There are four solar arrays on the station.

Port Bow

The first solar array is located on the leftmost side of the station, just west of Engineering. It is best accessed through the airlock in the Incinerator.

Starboard Bow

The second solar array is located on the right side of the station, east of Arrivals. It is best accessed through the airlock in the Auxiliary Base.

Starboard Quarter

The third solar array is located on the rightmost side of the station, east of Medbay. It is best accessed through the maintenance airlock in the Holodeck area and then going as far south as possible.

Port Quarter

The fourth solar array is located on the left side of the station, west of the Chapel. It is best accessed through the maintenance airlock north-west of the Escape Shuttle Hallway, going west until you hit a wall, south until you hit another wall and then west.

Setting up Solars

Connecting the Arrays

Nanotrasen engineers are renowned for their shoddy craftsmanship and poor work ethic. You will find that none of the four solar arrays have been connected to the station. You will need to connect the solar panels and the solar tracker to the wire leading from the station. To wire a tile, hold a cable coil in hand and click an adjacent tile, this will add a wire radiating from the center of the selected tile toward your current position. Using this method, connect the solar arrays and solar tracker to the station. Having excessive knotting in your wiring can sometimes cause power loss and metaphysical anomalies, so avoid it!

See here for a wiring example:
Wiring.gif

You need:

Optional:

  • Crowbar.png A crowbar to open doors if the power is out
  • Floor Tiles.png Floor tiles so as to protect your newly placed wiring from easy tampering

Calibrating the Arrays

Once you have wired an array, you need to calibrate the tracking and power so that it actually produces energy. Apparently, our space station is rotating or in orbit around something (no one really knows for sure). This means that the solar panels need to constantly rotate to face toward the sun. Click on the File:Solars Control.png Solar Control CPU, press refresh then set it to auto-tracking. You should see a degree displayed at the top ranging from 0 to 359; this is the current direction of the sun.

  • 0 degrees = North
  • 90 degrees = East
  • 180 degrees = South
  • 270 degrees = West

Auto rotation is not smooth, it jumps about every 20 seconds. Keep this in mind if it seems like nothing is happening. The consoles are a bit glitchy so you might have to turn off auto-tracking then turn it on again before the panels start to rotate. You don't need to use manual tracking unless a meteor or traitor destroys the tracking unit.

Setting up the SMES

After you have wired the array, set tracking to auto, and verified that the panels are indeed rotating, set the battery like so:

Charging: Auto

Input: 80,000 watts

Output: OFF!!

You want to leave output off and let the battery charge before you send the power to the station. It is recommended to wait for a charge of at least 10% before you turn on the output. The battery needs this charge to provide sustained power during the dark phase of the solar rotation. If the battery runs out of charge, you'll have to turn it on again or it will not provide power. While you wait for the battery to charge, you can wire up other solar arrays on the station.

Once the battery has some charge, you can set the output to 50,000 - 75,000 depending on how much power you need. (If the output load is equal to the output value you set, it means the station needs more power than it's getting. Crank it up!)

These four arms can provide enough energy to power the entire ship in the event of a singularity engine failure. But, given the position to the engine, the wires will likely be eaten away and you will have charging solars that aren't connected to the station.

Other Information

It is important to note that the station blocks sunlight. This is the biggest cause of solar fail known to spessmen. When the panels of an array face the sun (and are correctly wired) they produce about 90,000 Watts of power. However, if the station is between the panels and the sun, they produce 0 Watts of power. This means that as the panels rotate with auto-tracking, they move through a series of power levels ranging from 90k (full sun) to nothing (station obscures sun). The rotation cycle takes roughly 5 minutes to complete.

Why is this important? Because of the battery! See that big white thing in the solar control room? That's the SMES cell. It's a battery used for holding solar energy and transferring it to the station. Click on the battery and you get a window with input, output, and charging options.

Important SMES Facts

  1. The SMES doesn't charge if the input setting is higher than the actual amount of power being received!
  2. If the SMES charge drops to 0% the battery will stop sending power.

A common mistake is to immediately set the input to 90,000 watts (the amount produced by full sunlight) and the output to 80,000 watts. However, this will not work. Solar batteries (SMES cells) start at 20% power but if the engine is off the station drains them to 0% in a few minutes. An input of 90,000 watts (full sun) might charge the battery for a little while, but once the sunlight is blocked by the station the battery charge begins to drain. This causes the battery to turn off and even when the panels receive sunlight again, the battery won't be sending power unless an engineer turns it on again.

Skipping the SMES Cells

If you don't feel like configuring the SMES cells, you can optionally reroute the wiring and skip the whole battery setup! Just recognize two wires: The wire coming from the Solar Control CPU and going to the SMES cell, and the other wire coming from the SMES cell and going to the station power grid. Connect these two wires and voilá! You have skipped the SMES cell and saved yourself a lot of time. No need to turn that pesky SMES on at all, just configure the Solar Control CPU and you're done, time to move to the next set of solars!

BUT there is one big downside to this: the station powergrid now holds about 400 kW of power, which is almost enough to put someone into instant crit. Not a good thing if you have shocked doors or someone exposes those electrified grilles inside windows.

DANGER WILL ROBINSON

There are a few dangers on the solars, one being the electrical wires if you forgot to wear insulated gloves: Never forget or you will get zapped! In addition, you are vulnerable and alone. This leaves you an easy target for those pesky space carps and space-walking attackers that need a new cover identity. Finally, there is the chance to misstep and go drifting off through space. This hazard is easily solved if you act quickly. Simply throw something in the direction of your flight path, like shoes, or a pen. The equal and opposite reaction will start pushing you in the other direction!

Solar Arrays
link=File:Solars.png}}
Wire the solars, you lazy bums!
Purpose: Powers the station by capturing sun rays.
Key items: Solar Control Computer, SMES Cell
Workers: Chief Engineer, Engineer
Access: Captain, Chief Engineer, Engineer
Exits: North/South/West to the Solar Control Room (depending on the solar array you're on), Space
Engineering


What are the solars?

The solars are an alternative power source that are often fully neglected by but a few people, and for slightly dangerous reasons (covered in a lower section). However, they are the safest way to generate power for the whole station! They do great work too, for example if there was a black out of power already, they will always have power until hooked up, and can provide the engine APC a charge until it is set up itself.

Locations

There are four solar arrays on the station.

Port Bow

The first solar array is located on the leftmost side of the station, just north of Cargo Bay. It is best accessed through the airlock by the Vault and then going north-west through the airlock, and then north.

Starboard Bow

The second solar array is located on the right side of the station, north of Engineering. It is best accessed through the airlock east of the Gravity Generator Room.

Starboard Quarter

The third solar array is located on the rightmost side of the station, south of the Toxins Test Chamber. It is best accessed through the maintenance airlock east of the Escape Shuttle Hallway and then going as far east as possible.

Port Quarter

The fourth solar array is located on the left side of the station, south of Arrivals. It is best accessed through the maintenance airlock south of Arrivals and going south.

Setting up Solars

Connecting the Arrays

Nanotrasen engineers are renowned for their shoddy craftsmanship and poor work ethic. You will find that none of the four solar arrays have been connected to the station. You will need to connect the solar panels and the solar tracker to the wire leading from the station. To wire a tile, hold a cable coil in hand and click an adjacent tile, this will add a wire radiating from the center of the selected tile toward your current position. Using this method, connect the solar arrays and solar tracker to the station. Having excessive knotting in your wiring can sometimes cause power loss and metaphysical anomalies, so avoid it!

See here for a wiring example:
Wiring.gif

You need:

Optional:

  • Crowbar.png A crowbar to open doors if the power is out
  • Floor Tiles.png Floor tiles so as to protect your newly placed wiring from easy tampering

Calibrating the Arrays

Once you have wired an array, you need to calibrate the tracking and power so that it actually produces energy. Apparently, our space station is rotating or in orbit around something (no one really knows for sure). This means that the solar panels need to constantly rotate to face toward the sun. Click on the File:Solars Control.png Solar Control CPU, press refresh then set it to auto-tracking. You should see a degree displayed at the top ranging from 0 to 359; this is the current direction of the sun.

  • 0 degrees = North
  • 90 degrees = East
  • 180 degrees = South
  • 270 degrees = West

Auto rotation is not smooth, it jumps about every 20 seconds. Keep this in mind if it seems like nothing is happening. The consoles are a bit glitchy so you might have to turn off auto-tracking then turn it on again before the panels start to rotate. You don't need to use manual tracking unless a meteor or traitor destroys the tracking unit.

Setting up the SMES

After you have wired the array, set tracking to auto, and verified that the panels are indeed rotating, set the battery like so:

Charging: Auto

Input: 80,000 watts

Output: OFF!!

You want to leave output off and let the battery charge before you send the power to the station. It is recommended to wait for a charge of at least 10% before you turn on the output. The battery needs this charge to provide sustained power during the dark phase of the solar rotation. If the battery runs out of charge, you'll have to turn it on again or it will not provide power. While you wait for the battery to charge, you can wire up other solar arrays on the station.

Once the battery has some charge, you can set the output to 50,000 - 75,000 depending on how much power you need. (If the output load is equal to the output value you set, it means the station needs more power than it's getting. Crank it up!)

These four arms can provide enough energy to power the entire ship in the event of a singularity engine failure. But, given the position to the engine, the wires will likely be eaten away and you will have charging solars that aren't connected to the station.

Other Information

It is important to note that the station blocks sunlight. This is the biggest cause of solar fail known to spessmen. When the panels of an array face the sun (and are correctly wired) they produce about 90,000 Watts of power. However, if the station is between the panels and the sun, they produce 0 Watts of power. This means that as the panels rotate with auto-tracking, they move through a series of power levels ranging from 90k (full sun) to nothing (station obscures sun). The rotation cycle takes roughly 5 minutes to complete.

Why is this important? Because of the battery! See that big white thing in the solar control room? That's the SMES cell. It's a battery used for holding solar energy and transferring it to the station. Click on the battery and you get a window with input, output, and charging options.

Important SMES Facts

  1. The SMES doesn't charge if the input setting is higher than the actual amount of power being received!
  2. If the SMES charge drops to 0% the battery will stop sending power.

A common mistake is to immediately set the input to 90,000 watts (the amount produced by full sunlight) and the output to 80,000 watts. However, this will not work. Solar batteries (SMES cells) start at 20% power but if the engine is off the station drains them to 0% in a few minutes. An input of 90,000 watts (full sun) might charge the battery for a little while, but once the sunlight is blocked by the station the battery charge begins to drain. This causes the battery to turn off and even when the panels receive sunlight again, the battery won't be sending power unless an engineer turns it on again.

Skipping the SMES Cells

If you don't feel like configuring the SMES cells, you can optionally reroute the wiring and skip the whole battery setup! Just recognize two wires: The wire coming from the Solar Control CPU and going to the SMES cell, and the other wire coming from the SMES cell and going to the station power grid. Connect these two wires and voilá! You have skipped the SMES cell and saved yourself a lot of time. No need to turn that pesky SMES on at all, just configure the Solar Control CPU and you're done, time to move to the next set of solars!

BUT there is one big downside to this: the station powergrid now holds about 400 kW of power, which is almost enough to put someone into instant crit. Not a good thing if you have shocked doors or someone exposes those electrified grilles inside windows.

DANGER WILL ROBINSON

There are a few dangers on the solars, one being the electrical wires if you forgot to wear insulated gloves: Never forget or you will get zapped! In addition, you are vulnerable and alone. This leaves you an easy target for those pesky space carps and space-walking attackers that need a new cover identity. Finally, there is the chance to misstep and go drifting off through space. This hazard is easily solved if you act quickly. Simply throw something in the direction of your flight path, like shoes, or a pen. The equal and opposite reaction will start pushing you in the other direction!

Solar Arrays
link=File:Solars.png}}
Wire the solars, you lazy bums!
Purpose: Powers the station by capturing sun rays.
Key items: Solar Control Computer, SMES Cell
Workers: Chief Engineer, Engineer
Access: Captain, Chief Engineer, Engineer
Exits: East/West to the Solar Control Room (depending on the solar array you're on), Space
Engineering


What are the solars?

The solars are an alternative power source that are often fully neglected by but a few people, and for slightly dangerous reasons (covered in a lower section). However, they are the safest way to generate power for the whole station! They do great work too, for example if there was a black out of power already, they will always have power until hooked up, and can provide the engine APC a charge until it is set up itself.

Locations

There are two solar arrays on the station.

Port

The first solar array is located on the leftmost side of the station, west of the Brig. It is best accessed through the airlock north of the Escape Shuttle Hallway and then going north-west.

Starboard

The second solar array is located on the rightmost side of the station, north of the Xenobiology Lab. It is best accessed through the airlock south of the Holodeck and then going south.

Setting up Solars

Connecting the Arrays

Nanotrasen engineers are renowned for their shoddy craftsmanship and poor work ethic. You will find that none of the two solar arrays have been connected to the station. You will need to connect the solar panels and the solar tracker to the wire leading from the station. To wire a tile, hold a cable coil in hand and click an adjacent tile, this will add a wire radiating from the center of the selected tile toward your current position. Using this method, connect the solar arrays and solar tracker to the station. Having excessive knotting in your wiring can sometimes cause power loss and metaphysical anomalies, so avoid it!

See here for a wiring example:
Wiring.gif

You need:

Optional:

  • Crowbar.png A crowbar to open doors if the power is out
  • Floor Tiles.png Floor tiles so as to protect your newly placed wiring from easy tampering

Calibrating the Arrays

Once you have wired an array, you need to calibrate the tracking and power so that it actually produces energy. Apparently, our space station is rotating or in orbit around something (no one really knows for sure). This means that the solar panels need to constantly rotate to face toward the sun. Click on the File:Solars Control.png Solar Control CPU, press refresh then set it to auto-tracking. You should see a degree displayed at the top ranging from 0 to 359; this is the current direction of the sun.

  • 0 degrees = North
  • 90 degrees = East
  • 180 degrees = South
  • 270 degrees = West

Auto rotation is not smooth, it jumps about every 20 seconds. Keep this in mind if it seems like nothing is happening. The consoles are a bit glitchy so you might have to turn off auto-tracking then turn it on again before the panels start to rotate. You don't need to use manual tracking unless a meteor or traitor destroys the tracking unit.

Setting up the SMES

After you have wired the array, set tracking to auto, and verified that the panels are indeed rotating, set the battery like so:

Charging: Auto

Input: 80,000 watts

Output: OFF!!

You want to leave output off and let the battery charge before you send the power to the station. It is recommended to wait for a charge of at least 10% before you turn on the output. The battery needs this charge to provide sustained power during the dark phase of the solar rotation. If the battery runs out of charge, you'll have to turn it on again or it will not provide power. While you wait for the battery to charge, you can wire up other solar arrays on the station.

Once the battery has some charge, you can set the output to 50,000 - 75,000 depending on how much power you need. (If the output load is equal to the output value you set, it means the station needs more power than it's getting. Crank it up!)

These two arms can provide enough energy to power the entire ship in the event of a singularity engine failure. But, given the position to the engine, the wires will likely be eaten away and you will have charging solars that aren't connected to the station.

Other Information

It is important to note that the station blocks sunlight. This is the biggest cause of solar fail known to spessmen. When the panels of an array face the sun (and are correctly wired) they produce about 90,000 Watts of power. However, if the station is between the panels and the sun, they produce 0 Watts of power. This means that as the panels rotate with auto-tracking, they move through a series of power levels ranging from 90k (full sun) to nothing (station obscures sun). The rotation cycle takes roughly 5 minutes to complete.

Why is this important? Because of the battery! See that big white thing in the solar control room? That's the SMES cell. It's a battery used for holding solar energy and transferring it to the station. Click on the battery and you get a window with input, output, and charging options.

Important SMES Facts

  1. The SMES doesn't charge if the input setting is higher than the actual amount of power being received!
  2. If the SMES charge drops to 0% the battery will stop sending power.

A common mistake is to immediately set the input to 90,000 watts (the amount produced by full sunlight) and the output to 80,000 watts. However, this will not work. Solar batteries (SMES cells) start at 20% power but if the engine is off the station drains them to 0% in a few minutes. An input of 90,000 watts (full sun) might charge the battery for a little while, but once the sunlight is blocked by the station the battery charge begins to drain. This causes the battery to turn off and even when the panels receive sunlight again, the battery won't be sending power unless an engineer turns it on again.

Skipping the SMES Cells

If you don't feel like configuring the SMES cells, you can optionally reroute the wiring and skip the whole battery setup! Just recognize two wires: The wire coming from the Solar Control CPU and going to the SMES cell, and the other wire coming from the SMES cell and going to the station power grid. Connect these two wires and voilá! You have skipped the SMES cell and saved yourself a lot of time. No need to turn that pesky SMES on at all, just configure the Solar Control CPU and you're done, time to move to the next set of solars!

BUT there is one big downside to this: the station powergrid now holds about 400 kW of power, which is almost enough to put someone into instant crit. Not a good thing if you have shocked doors or someone exposes those electrified grilles inside windows.

DANGER WILL ROBINSON

There are a few dangers on the solars, one being the electrical wires if you forgot to wear insulated gloves: Never forget or you will get zapped! In addition, you are vulnerable and alone. This leaves you an easy target for those pesky space carps and space-walking attackers that need a new cover identity. Finally, there is the chance to misstep and go drifting off through space. This hazard is easily solved if you act quickly. Simply throw something in the direction of your flight path, like shoes, or a pen. The equal and opposite reaction will start pushing you in the other direction!



Jobstemp.png Locations on Yogstation
General Recreational Medical Supply Science Engineering Security Command Upkeep Outside