User:Autisticfroggy/Sandbox: Difference between revisions

Jump to navigation Jump to search
m
Line 46: Line 46:
===Cooling your tritium===
===Cooling your tritium===


This is something the atmosian should be familiar with already - scrubbers work best when removing cold gas. The reasoning is simple, they can cram more moles in if the pressure was lower, but cooling is not the only answer to fast scrubbing, there is another that one should learn to use effectively: Volume. Volume dictates pressure in the ideal gas section with a linear inverse relation, as any atmosian should know and connecting your scrubbers directly to a high volume pipenet will allow them to harvest even more gas per tick. Any atmosian who has studied the SM will now understand why the spaceloop is so useful, it provides both volume and cooling. The same applies to your tritium, except its even hotter than your SM (though thankfully less dangerous), dumping all the gas into a large spaceloop is the best method of harvesting it, even better than freezers. In fact, freezers are completely outclassed by spaceloops in this department, regardless of how well upgraded the freezer is. The spaceloop may not be able to compete with the freezer in reachable temperature, but it makes up for that fact by having 2 orders of magnitude more volume. A spaceloop of 20,000 volume has 100 times the volume of a cooler, and since its cooling speed scales linearly with the amount of tiles it spans (which also increases volume), they are a far more effective cooling solution than a fully upgraded freezer ever will, at least in this situation. Plus, a large spaceloop can be built in 5 minutes with an RPD, while a freezer requires science to do their job, miners to do their job and for you to have access to said materials. This usually occurs at the 20 minute mark at best. The spaceloop can be completed by the 15 minute mark while tritium harvesting is underway. This 10 minute gap clearly makes spaceloops far more effective for the job - you will only need the freezers if you for some reason need the gas at temperatures below 22.7K, such as for making hypernoblium bombs or portable tritiumfloods in a tank for traitor activities.
This is something the atmosian should be familiar with already - scrubbers work best when removing cold gas. The reasoning is simple, they can cram more moles in if the pressure is lower, but cooling is not the only answer to fast scrubbing, there is another that one should learn to use effectively: Volume. Volume dictates pressure in the ideal gas section with a linear inverse relation, as any atmosian should know, and connecting your scrubbers directly to a high volume pipenet will allow them to harvest even more gas per tick. Any atmosian who has studied the SM will now understand why the spaceloop is so useful, it provides both volume and cooling. The same applies to your tritium, except it's even hotter than your SM (though thankfully less dangerous), dumping all the gas into a large spaceloop is the best method of harvesting it, even better than freezers. In fact, freezers are completely outclassed by spaceloops in this department, regardless of how well upgraded the freezer is. The spaceloop may not be able to compete with the freezer in reachable temperature, but it makes up for that fact by having 2 orders of magnitude more volume. A spaceloop of 20,000 volume has 100 times the volume of a cooler, and since its cooling speed scales linearly with the amount of tiles it spans (which also increases volume), they are a far more effective cooling solution than a fully upgraded freezer ever will, at least in this situation. Plus, a large spaceloop can be built in 5 minutes with an RPD, while a freezer requires science to do their job, miners to do their job and for you to have access to said materials. This usually occurs at the 20 minute mark at best. The spaceloop can be completed by the 15 minute mark while tritium harvesting is underway. This 10 minute gap clearly makes spaceloops far more effective for the job - you will only need the freezers if you for some reason need the gas at temperatures below 22.7K, such as for making hypernoblium bombs or portable tritiumfloods in a tank for traitor activities.


===Water Vapor Waste Removal===
===Water Vapor Waste Removal===
Line 64: Line 64:
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
'''Pulsing the tritium scrubbers'''
'''Pulsing the tritium scrubbers'''
<div class="mw-collapsible-content">A far more common method due to its balance between efficiency and time costs. Instead of building a dedicated scrubber and injector pipenet for the water vapor, a hybrid tritium + water vapor scrubbing system is used instead. This consists of adding a reflow filter to the existing tritium cooling vessel, with the output connected to an injector, usually the prebuilt one in the incinerator, this allows for the retention of tritium in the cooling vessel and the expulsion of water. Be warned however, that tritium and water vapor harvesting cannot be done at the same time without drastically lowering the rate at which tritium is scrubbed as water vapor comprises a far larger percentage of the chamber's gasmix by percentage compared to the tritium and actually causes so much water vapor to enter the cooling vessel that it clogs, preventing further harvesting. For this reason, the scrubbers are pulsed instead, this means setting the scrubbers to scrub water vapor until the cooling vessel fills to capacity, then turning it off until it cools down and allows for more water vapor. This minimizes the scrubbing window in which the scrubbers clog and creates a more stochiometrically favorable gasmix for further scrubbing pulses. This process requires manual control and cannot be automated ; it also relies on thermal queues that require some training to spot. An active burn chamber with a bluish white flame and a green tritium overlay is generally a healthy flame over 10000 kelvin and a low percentage of water vapor in its gasmix, once it turns orangeish, or worse red, the water vapor has accumulated to the point that it is degrading the temperature of your fires - it is at this point you begin pulsing the scrubbers for water vapor. A well designed cooling vessel can accumulate a large amount of water vapor before clogging, usually causing the heat pipes to turn orange or red to reflect the added heat, it is generally at this point where the vessel clogs and water vapor scrubbing should be stopped, completing a single scrubber pulsing cycle. It usually takes many cycles to recover from a red fire, but not as many to recover from an orange fire.</div>
<div class="mw-collapsible-content">A far more common method due to its balance between efficiency and time costs. Instead of building a dedicated scrubber and injector pipenet for the water vapor, a hybrid tritium + water vapor scrubbing system is used instead. This consists of adding a reflow filter to the existing tritium cooling vessel, with the output connected to an injector, usually the prebuilt one in the incinerator, this allows for the retention of tritium in the cooling vessel and the expulsion of water. Be warned however, that tritium and water vapor harvesting cannot be done at the same time without drastically lowering the rate at which tritium is scrubbed as water vapor comprises a far larger percentage of the chamber's gasmix by percentage compared to the tritium and actually causes so much water vapor to enter the cooling vessel that it clogs, preventing further harvesting. For this reason, the scrubbers are pulsed instead, this means setting the scrubbers to scrub water vapor until the cooling vessel fills to capacity, then turning it off until it cools down and allows for more water vapor. This minimizes the scrubbing window in which the scrubbers clog and creates a more stochiometrically favorable gasmix for further scrubbing pulses. This process requires manual control and cannot be automated; it also relies on thermal queues that require some training to spot. An active burn chamber with a bluish white flame and a green tritium overlay is generally a healthy flame over 10000 kelvin and a low percentage of water vapor in its gasmix, once it turns orangeish, or worse red, the water vapor has accumulated to the point that it is degrading the temperature of your fires - it is at this point you begin pulsing the scrubbers for water vapor. A well designed cooling vessel can accumulate a large amount of water vapor before clogging, usually causing the heat pipes to turn orange or red to reflect the added heat, it is generally at this point where the vessel clogs and water vapor scrubbing should be stopped, completing a single scrubber pulsing cycle. It usually takes many cycles to recover from a red fire, but not as many to recover from an orange fire.</div>
</div>
</div>


Line 79: Line 79:
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
'''Turning off the fuel and scrubbing out the vapor'''
'''Turning off the fuel and scrubbing out the vapor'''
<div class="mw-collapsible-content">self explanatory. Without heat being produced, the water vapor is much colder and easier to scrub. Furthermore, as no tritium is being produced, you can do this without worrying about any tritium-vapor scrubbing contention. This is a lot better than simply venting since you preserve the oxygen, but does take a bit more time. This also resets the temperature of the chamber to near room temperature and so is not advised to being performed frequently if thermals are your objective. They are however, best performed if you wish to clear a burn chamber in preparation for heating to fusion temperatures for your fusion can.</div>
<div class="mw-collapsible-content">Self explanatory. Without heat being produced, the water vapor is much colder and easier to scrub. Furthermore, as no tritium is being produced, you can do this without worrying about any tritium-vapor scrubbing contention. This is a lot better than simply venting since you preserve the oxygen, but does take a bit more time. This also resets the temperature of the chamber to near room temperature and so is not advised to being performed frequently if thermals are your objective. They are however, best performed if you wish to clear a burn chamber in preparation for heating to fusion temperatures for your fusion can.</div>
</div>
</div>


Remember that the roundstart injector in the incinerator is not maxed out, bottlenecking you if you forget to max it out.
Remember that the round-start injector in the incinerator is not maxed out, bottle-necking you if you forget to max it out.


==Nitryl==
==Nitryl==


Nitryl is not particularly interesting, the speedup murders your lungs and is best used in short bursts, but is not worth the time investment to manufacture. Stimulum however, a nitryl prerequisite, is far more valuable and may be worth it depending on your situation. The manufacturing of nitryl requires Nitrogen and Oxygen with some N2O catalyst and a large amount of heat. However, the conversion efficiency of nitryl scales upwards starting from the requisite 22500K, with most tritium burns under active water vapor scrubbing barely reaching the requisite temperatures and if they do, the conversion efficiency is so low the reaction proceeds far too slowly for batch production. For this reason, nitryl is unique in that it does not technically require to manufacture, but mass production requires it. As a result, it is generally advisable to reserve a slot of your sequestral heat exchange pipes for the nitryl, alongside the fusion can and hypernoblium.
Nitryl is not particularly interesting, the speedup murders your lungs and is best used in short bursts, but is not worth the time investment to manufacture. Stimulum however, a nitryl prerequisite, is far more valuable and may be worth it depending on your situation. The manufacturing of nitryl requires Nitrogen and Oxygen with some N2O catalyst and a large amount of heat. However, the conversion efficiency of nitryl scales upwards starting from the requisite 22500K, with most tritium burns under active water vapor scrubbing barely reaching the requisite temperatures and if they do, the conversion efficiency is so low the reaction proceeds far too slowly for batch production. For this reason, nitryl is unique in that it does not technically require to manufacture, but mass production requires it. As a result, it is generally advisable to reserve a slot of your sequestral heat exchange pipes for the nitryl, alongside the fusion can and hypernoblium.
System Operators, Wiki Staff
869

edits

Navigation menu