Plasma/potential earth like equivalents: Difference between revisions

Jump to navigation Jump to search
Just generally unfucks this so it doesn't shit all over exadv's lore
imported>Oranges
(Created page with "=Note from senior projects administrator Platos= So, for several years, NT has been doing this "plasma research" shit. However, apparently, NT only hired pyromaniacs and terro...")
 
imported>Oranges
(Just generally unfucks this so it doesn't shit all over exadv's lore)
Line 6: Line 6:
It would be worth NT's time to investigate fabricating and developing these compounds and investigating their properties to see if they can replicate plasma's energy efficiency and ability to harness power from the singularity
It would be worth NT's time to investigate fabricating and developing these compounds and investigating their properties to see if they can replicate plasma's energy efficiency and ability to harness power from the singularity


=Analysis: Identity of Plasma and earthlike eqivalents=
=Analysis: Identity of Plasma and earth equivalents=


Now, when a hydrocarbon burns, it produces CO<sub>2</sub>, and H<sub>2</sub>O. '''Burning Plasma produces ONLY CO<sub>2</sub>.''' Thus, Plasma is a hydrocarbon. It is composed ONLY of Hydrogen, and Carbon. Now, it MAY also contain oxygen, but that is variable. Given that we don't actually have water as a gas in SS13, you can just ignore the part about the water. One thing about hydrocarbons, is that they are usually gases, then around hexane, turn to volatile liquids. Plasma, is very fucking volatile (Ever spill a beaker of it? Take my advice: Don't.)
Now, when a hydrocarbon burns, it produces CO<sub>2</sub>, and H<sub>2</sub>O. '''Burning Plasma produces ONLY CO<sub>2</sub>.''' Thus, Plasma resembles a hydrocarbon. It could be composed ONLY of Hydrogen, and Carbon. Now, it MAY also contain oxygen, but that is variable. Given that we don't actually have water as a gas in SS13, you can just ignore the part about the water. One thing about hydrocarbons, is that they are usually gases, then around hexane, turn to volatile liquids. Plasma, is very fucking volatile (Ever spill a beaker of it? Take my advice: Don't.)


===Now, for the number crunching and data.===
===Now, for the number crunching and data.===
From here on in, a CANISTER refers to to the large, colored gas containers that you fill TANKS in. A CANISTER needs to be pulled, a TANK can be held in your hand.
From here on in, a CANISTER refers to to the large, colored gas containers that you fill TANKS in. A CANISTER needs to be pulled, a TANK can be held in your hand.


A full canister of plasma has an internal pressure of 4559.6 kPa. Said full canister of plasma was released in a 6x6 room, built in space. This room was entirely devoid of air, and had a temperature of 0 Celsius (270 Kelvin). A gas analyzer was used to measure the pressure in this 6x6 room. It was 20.4 kPa, and the temperature was 19C (289K). NOW, HERE IS THE VARIABLE PART: In ooc, it was agreed upon that a tile had a volume of 1.6 m<sup>3</sup>. HOWEVER. In the code, it says that a gas cell is 2.5m<sup>3</sup>. Ultimately, using the 2.5 m³ tile messes things up, getting us into a situation where we end up with half a carbon, and, yeah. For the sake of completion, I'll post the math for both.
A full canister of plasma has an internal pressure of 4559.6 kPa. Said full canister of plasma was released in a 6x6 room, built in space. This room was entirely devoid of air, and had a temperature of 0 Celsius (270 Kelvin). A gas analyzer was used to measure the pressure in this 6x6 room. It was 20.4 kPa, and the temperature was 19C (289K).  
 
NOW, HERE IS THE VARIABLE PART: researchers agreed upon that our test samples had a volume of 1.6 m<sup>3</sup>. HOWEVER a competing group indicated they thought a single test cell was 2.5m<sup>3</sup>. Ultimately, using the 2.5 m³ tile messes things up, getting us into a situation where we end up with half a carbon, and, yeah. For the sake of completion, I'll post the math for both.


'''First, the 1.6 m³:'''
'''First, the 1.6 m³:'''


Using the Ideal Gas Formula (PV=nrt), we can calculate the number of moles of plasma in our room, via some algebra fandangling. PV=nrt/rt = (PV)/(rt)=n. Pressure times volume DIVIDED BY gas constant times temperature equals moles.  
Using the Ideal Gas Formula (PV=nrt), we can calculate the number of moles of plasma in our test cannister, via some algebra fandangling. PV=nrt/rt = (PV)/(rt)=n. Pressure times volume DIVIDED BY gas constant times temperature equals moles.  


1.6 m³ = 4.096.    6x6 = 36.    4.096 x 36 = 147.456.  1 m³ = 1000 l.  147.456 x 1000 = 147,456 l.
1.6 m³ = 4.096.    6x6 = 36.    4.096 x 36 = 147.456.  1 m³ = 1000 l.  147.456 x 1000 = 147,456 l.
Line 36: Line 38:
A full tank of plasma, which contains either 4774.80 mol or 1251.95 mol of plasma at 4559.6 kPa, was pumped into the incinerator burn chamber. An excess of oxygen was then pumped in, and the whole mix was ignited. After it cooled, our brave atmos tech scientist entered. Some time was taken to let the mixture spread throughout the 10 tile area. The area was then scanned.
A full tank of plasma, which contains either 4774.80 mol or 1251.95 mol of plasma at 4559.6 kPa, was pumped into the incinerator burn chamber. An excess of oxygen was then pumped in, and the whole mix was ignited. After it cooled, our brave atmos tech scientist entered. Some time was taken to let the mixture spread throughout the 10 tile area. The area was then scanned.


375.35 kPa, at 97.4 °C (370.4K). THIS WAS DONE ON ASTEROIDSTATION HOWEVER, and on Asteroid, the incinerator burn chamber is not empty! CO<sub>2</sub> 53 %, O<sub>2</sub> 36 %, N2 9 %.
375.35 kPa, at 97.4 °C (370.4K). THIS WAS DONE ON ASTEROIDSTATION (administrator note: this is our research station in the Hurl sector) HOWEVER, and on Asteroid, the incinerator burn chamber is not empty! CO<sub>2</sub> 53 %, O<sub>2</sub> 36 %, N2 9 %.


375.35 x 0.53 = 198.935 kPa.
375.35 x 0.53 = 198.935 kPa.
Line 59: Line 61:
===What the fuck is CO<sub>2</sub>===
===What the fuck is CO<sub>2</sub>===


Now, That means that 1251.94 molPlasma + ??? molO<sub>2</sub> ----> ??? molH<sub>2</sub>O + 2,656 molCO<sub>2</sub>. But because we did the above, we can basically summarize that there are 2,646 mol of carbon in 1251.94 mol of Plasma.
Now, That means that 1251.94 molPlasma + ??? molO<sub>2</sub> ----> ??? molH<sub>2</sub>O + 2,656 molCO<sub>2</sub>. But because we did the above, we can basically summarize that there are potentially 2,646 mol of carbon equivalents in 1251.94 mol of Plasma.


Pure hydrocarbon chains exhibit a funny property. By taking the amount of CO<sub>2</sub> produced (and thus, carbon), and dividing it by the moles of hydrocarbon you burnt to get said CO<sub>2</sub> (and assuming you have 100 % total combustion, no carbon monoxide produced), you can find out how many carbons are in a single mole of the Hydrocarbon!
Pure hydrocarbon chains exhibit a funny property. By taking the amount of CO<sub>2</sub> produced (and thus, carbon), and dividing it by the moles of hydrocarbon you burnt to get said CO<sub>2</sub> (and assuming you have 100 % total combustion, no carbon monoxide produced), you can find out how many carbons are in a single mole of the Hydrocarbon!
Line 81: Line 83:
And if we use the 2.5 m³, we end up with 10,093 / 4995 = 2.02! Told you it didn't matter.
And if we use the 2.5 m³, we end up with 10,093 / 4995 = 2.02! Told you it didn't matter.


Now, this is all theoretical, and calculations, and I've rounded a lot of the decimals (I ain't working with 24.858849389200102299383838392929292 due to spessmens, 2.858 will suffice), we can thus say, that there are TWO CARBONS IN A PLASMA MOLECULE. Plus, y'know, you can't have .11, or .02, of a molecule. Shit just ain't possible.
Now, this is all theoretical, and calculations, and I've rounded a lot of the decimals (I ain't working with 24.858849389200102299383838392929292 due to spessmens, 2.858 will suffice), we can thus say, that there are TWO CARBONS IN A PLASMA EQUIVALENT MOLECULE. Plus, y'know, you can't have .11, or .02, of a molecule. Shit just ain't possible.


Which means that plasma has a structure that looks something like:
Which means that a plasma equivalent compound has a structure that looks something like:


'''C-C,,,,C=C, or C≡C'''
'''C-C,,,,C=C, or C≡C'''
Line 91: Line 93:
===A rant about isotopes===
===A rant about isotopes===


But...Then plasma is just a regular derivative of ethane, ethene, or ethyne! "what the fuck pybro you're such a fucking faggot you waste my very precious ten minutes!". Hold up there! Yes, it's just regular ethene, ethane, '''IF''' YOU USE <sup>1</sup>H, AKA Protium, AKA "Normal hydrogen" AKA "A single proton with an electron buzzing around it". Atoms are composed of protons (positive), electrons (negative), and neutrons (neutral). Isotopes are atoms that have a "deviant" number of neutrons. This messes shit up, and gives isotopes different properties than the "normal" element. Generally (although there are exceptions!), the "normal" isotope has as many neutrons as it does protons. Protium AKA "normal" hydrogen, is one such exception.
But...Then plasma is just equivalent to a regular derivative of ethane, ethene, or ethyne! "what the fuck pybro you're such a fucking faggot you waste my very precious ten minutes!". Hold up there! Yes, it's just regular ethene, ethane, '''IF''' YOU USE <sup>1</sup>H, AKA Protium, AKA "Normal hydrogen" AKA "A single proton with an electron buzzing around it". Atoms are composed of protons (positive), electrons (negative), and neutrons (neutral). Isotopes are atoms that have a "deviant" number of neutrons. This messes shit up, and gives isotopes different properties than the "normal" element. Generally (although there are exceptions!), the "normal" isotope has as many neutrons as it does protons. Protium AKA "normal" hydrogen, is one such exception.
   
   
Hyrogen has two isotopes. One, Deuterium, which is stable, and forms Deuterium Oxide (D<sub>2</sub>O), AKA "Heavy Water" (heavy water icecubes don't float on top of liquid water or heavy water, fun fact). Deuterium is a proton, a neutron, and an electron. There is also, TRITIUM, which is two neutrons, a proton, an electron. Tritium is also radioactive. On earth, Tritium is rare. In spess however, it's rather common (the source of tritium on earth is normal hydrogen getting hit by COSMIC RAYS). Tritium is also very toxic.  
Hyrogen has two isotopes. One, Deuterium, which is stable, and forms Deuterium Oxide (D<sub>2</sub>O), AKA "Heavy Water" (heavy water icecubes don't float on top of liquid water or heavy water, fun fact). Deuterium is a proton, a neutron, and an electron. There is also, TRITIUM, which is two neutrons, a proton, an electron. Tritium is also radioactive. On earth, Tritium is rare. In spess however, it's rather common (the source of tritium on earth is normal hydrogen getting hit by COSMIC RAYS). Tritium is also very toxic.  
Line 100: Line 102:


Thus, we know the following:
Thus, we know the following:
* Plasma is a two carbon compound, and the only two other elements that are/could be in it are hydrogen and oxygen.  
* Plasma is equivalent is a two carbon compound, and the only two other elements that are/could be in it are hydrogen and oxygen.  
* Plasma is a volatile liquid.
* Plasma is a volatile liquid.
* Plasma can be a liquid, gas, and solid at room temperature.
* Plasma can be a liquid, gas, and solid at room temperature.
Line 107: Line 109:
* When mixed with nitrogen and hydrogen, it produces lexorin, which basically shuts down cellular respiration. While not as potent as raw cyanide, lexorin is most certainly a brand name of some nitrile compound that NanoTrasen has a trademark on and sells as a paint thinner or something. BUT! Cyanide/Nitrile is basically a carbon and a nitrogen triple bonded together, and lexorin is made by adding plasma, nitrogen, and hydrogen.  
* When mixed with nitrogen and hydrogen, it produces lexorin, which basically shuts down cellular respiration. While not as potent as raw cyanide, lexorin is most certainly a brand name of some nitrile compound that NanoTrasen has a trademark on and sells as a paint thinner or something. BUT! Cyanide/Nitrile is basically a carbon and a nitrogen triple bonded together, and lexorin is made by adding plasma, nitrogen, and hydrogen.  


Thus, I propose that Plasma looks something like this:
Thus, I propose that a Plasma equivalent compound with earth chemistry looks something like this:


[[File:Plasma_molecule.png]]
[[File:Plasma_molecule.png]]
Line 113: Line 115:
Essentially, Tritiated Ethanol. It's volatile, burns very easily, the Alcohol group at the right (Tritahol?) provides it with enough mass and hydrogen bonding (tritium bonding?) to keep it stable as a liquid, yet is still volatile, and is incredibly bad to drink.  
Essentially, Tritiated Ethanol. It's volatile, burns very easily, the Alcohol group at the right (Tritahol?) provides it with enough mass and hydrogen bonding (tritium bonding?) to keep it stable as a liquid, yet is still volatile, and is incredibly bad to drink.  


This also answers several questions.
This also indicates some very interesting basic properties


One, plasma is a radioactive compound, yes, but the halflife of Tritium is 12.3 YEARS. It is very fucking toxic, and is a great catalyst/solvent. It's not very toxic ON CONTACT, for short periods. But upon ingestion, it basically fucks your whole body up. The biochemistry of this is that your body uses the tritium/tritium oxide to replace your normal protium. Now, Deuterium in large quantities fucks you up because it's heavier than protium, and as such, has interesting effects on your body (and by interesting I mean "bad/deadly"). Now let's make it even heavier, and radioactive. Yeah.  
One the equivalent compound is a radioactive element, yes, but the halflife of Tritium is 12.3 YEARS. It is very fucking toxic, and is a great catalyst/solvent. It's not very toxic ON CONTACT, for short periods. But upon ingestion, it basically fucks your whole body up. The biochemistry of this is that your body uses the tritium/tritium oxide to replace your normal protium. Now, Deuterium in large quantities fucks you up because it's heavier than protium, and as such, has interesting effects on your body (and by interesting I mean "bad/deadly"). Now let's make it even heavier, and radioactive. Yeah.  


Two, plasma would be rare on Earth, but in a gas giant that's composed mainly of this shit, it'd be produced easily. Even more so if the Plasma-Gas-Giant doesn't have an atmosphere that could block out the cosmic rays.  
Two, plasma would be rare on Earth, but in a gas giant that's composed mainly of this shit, it'd be produced easily. Even more so if the Plasma-Gas-Giant doesn't have an atmosphere that could block out the cosmic rays.  
Line 121: Line 123:
Three, Tritium has a rather large half life, and even then is rather weak as far as radioactivity goes (you still don't want it in you, however). You can dunk yourself in tritium oxide (T<sub>2</sub>O), and so long as you don't get any IN YOU, your guts will be fine, you only risk skin cancer.  
Three, Tritium has a rather large half life, and even then is rather weak as far as radioactivity goes (you still don't want it in you, however). You can dunk yourself in tritium oxide (T<sub>2</sub>O), and so long as you don't get any IN YOU, your guts will be fine, you only risk skin cancer.  


Four, given that burning plasma only produces CO<sub>2</sub> (and water, which is actually Tritium Oxide, aka super-heavy water, aka radio-fucking-active water), it can ONLY have Hydrogen (or isotopes of), Carbon, and oxygen in it. Tritium is necessary to get the weight up into the range where it can be a liquid at standard temperature and pressure AT ALL, while at the same time giving it the necessary toxicity. Plasma gives you TOXIN damage, it does NOT give you oxyloss damage, so it doesn't just suffocate you, it actively attacks your body in SOME way. Ethane (C<sub>2</sub>H<sub>6</sub>) does not do this, and is pretty much completely non-toxic. Hell, the only real dangers of ethane are asphyxiation (oxyloss) and igniting it (burn/bomb).
Four, given that burning the compound only produces CO<sub>2</sub> (and water, which is actually Tritium Oxide, aka super-heavy water, aka radio-fucking-active water), it can ONLY have Hydrogen (or isotopes of), Carbon, and oxygen in it. Tritium is necessary to get the weight up into the range where it can be a liquid at standard temperature and pressure AT ALL, while at the same time giving it the necessary toxicity. Plasma gives you TOXIN damage, it does NOT give you oxyloss damage, so it doesn't just suffocate you, it actively attacks your body in SOME way. Ethane (C<sub>2</sub>H<sub>6</sub>) does not do this, and is pretty much completely non-toxic. Hell, the only real dangers of ethane are asphyxiation (oxyloss) and igniting it (burn/bomb).


Five, the OH (or OT, as it were) is necessary to also bump up the weight into the range where it can be a liquid/solid at room temperature. It also gives it enough intermolecular forces (the hydrogen/tritium bonding) to aid it being a liquid.
Five, the OH (or OT, as it were) is necessary to also bump up the weight into the range where it can be a liquid/solid at room temperature. It also gives it enough intermolecular forces (the hydrogen/tritium bonding) to aid it being a liquid.


Six, Solid plasma is plasma put under intense pressure for a quick moment, allowing it to crystallize. When left alone, it will eventually melt, and evaporate.
Eight, the combustion equation for this compound would be:
 
Seven, NOWHERE IS THE EXPLICIT MASS OF PLASMA ACTUALLY STATED.
 
Eight, the combustion equation for plasma would be:


C<sub>2</sub>T<sub>5</sub>OT + 3O<sub>2</sub> ---> 2CO<sub>2</sub> + 3T<sub>2</sub>O
C<sub>2</sub>T<sub>5</sub>OT + 3O<sub>2</sub> ---> 2CO<sub>2</sub> + 3T<sub>2</sub>O
Anonymous user

Navigation menu