Guide to Atmospherics: Difference between revisions

Jump to navigation Jump to search
No edit summary
 
Line 83: Line 83:
===[[File:Dilithium_canister.png]]Dilithium===
===[[File:Dilithium_canister.png]]Dilithium===
Dilithium is procured from lavaland crystals by miners, then stuffed into a blender and mixed with water. This way, each crystal generates about 200 moles of gas. It lowers the temperature threshold required for fusion asymptotically to 425K depending on the amount. This makes it completely impractical and useless, unless it's used with a ''very specific and complicated Supermatter Engine setup''...
Dilithium is procured from lavaland crystals by miners, then stuffed into a blender and mixed with water. This way, each crystal generates about 200 moles of gas. It lowers the temperature threshold required for fusion asymptotically to 425K depending on the amount. This makes it completely impractical and useless, unless it's used with a ''very specific and complicated Supermatter Engine setup''...
===[[File:Freon.png]]Freon===
===[[File:Freon_canister.png]]Freon===
On temperature lower than 0°C (273.15 K) Freon will create an endothermic reaction with O<sub>2</sub>, meaning it will absorb heat from the atmosphere, down to a minimum close to 50K. Adding Pluonium will catalyse the reaction so that it may begin at temperatures up to 310 kelvin, which is above room temperature. This reaction produces CO<sub>2</sub> and if the temperature is between 120-160K the reaction has a small chance to also produce solid sheets of hot ice .  
On temperature lower than 0°C (273.15 K) Freon will create an endothermic reaction with O<sub>2</sub>, meaning it will absorb heat from the atmosphere, down to a minimum close to 50K. Adding Pluonium will catalyse the reaction so that it may begin at temperatures up to 310 kelvin, which is above room temperature. This reaction produces CO<sub>2</sub> and if the temperature is between 120-160K the reaction has a small chance to also produce solid sheets of hot ice .  


Line 93: Line 93:


If hit with a welder or burned the hot ice will melt, releasing the power stored inside. This releases large amounts of hot plasma into the air. (''Moles of plasma released = 150 '''x''' number of sheets'') and (''Heat released = 20 '''x''' number of sheets '''+''' 300K'').
If hit with a welder or burned the hot ice will melt, releasing the power stored inside. This releases large amounts of hot plasma into the air. (''Moles of plasma released = 150 '''x''' number of sheets'') and (''Heat released = 20 '''x''' number of sheets '''+''' 300K'').
===[[File:H2.png]]Hydrogen===
===[[File:H2.png]]Hydrogen===
Hydrogen is a flammable gas which when ignited burns similarly to tritium. Hydrogen is made by electrolyzing Water Vapor with an electrolyzer machine. Hydrogen is solidified in a reaction with BZ as catalyst at high heat and pressure (over 1e4 for both) to produce metal hydrogen, which can be used to make armor, a fireaxe, and a Hardsuit. Metal Hydrogen can also be created within the [[Machines#Crystallizer|Crystallizer]].
Hydrogen is a flammable gas which when ignited burns similarly to tritium. Hydrogen is made by electrolyzing Water Vapor with an electrolyzer machine. Hydrogen is solidified in a reaction with BZ as catalyst at high heat and pressure (over 1e4 for both) to produce metal hydrogen, which can be used to make armor, a fireaxe, and a Hardsuit. Metal Hydrogen can also be created within the [[Machines#Crystallizer|Crystallizer]].
Wiki Staff
1,100

edits

Navigation menu