User:Autisticfroggy/Sandbox: Difference between revisions

m
(Formatting)
Line 21: Line 21:
Tritium is the most frequently produced gas in the turbine and for good reason. It is the most energetic non-fusion gas reaction, producing enough heat for the nitryl reaction, heating up fusion canisters to the requisite temperatures, generating radiation for the pluoxium reaction without the use of a supermatter crystal and is required in all the higher level gases. It also makes for great practice, since mastering the techniques required to produce large amounts of it touches on one of the essentials of every other gas reaction. Due to this, it is a good idea to practice tritium synthesis as you'll find it useful for all other reactions.
Tritium is the most frequently produced gas in the turbine and for good reason. It is the most energetic non-fusion gas reaction, producing enough heat for the nitryl reaction, heating up fusion canisters to the requisite temperatures, generating radiation for the pluoxium reaction without the use of a supermatter crystal and is required in all the higher level gases. It also makes for great practice, since mastering the techniques required to produce large amounts of it touches on one of the essentials of every other gas reaction. Due to this, it is a good idea to practice tritium synthesis as you'll find it useful for all other reactions.


Tritium is produced when plasma burns under a high concentration of oxygen, specifically, a threshold (known in the code as the super saturation threshold) 96 times more oxygen than plasma. For this reason, only a 1 percent amount of plasma mixed with 96 percent more of oxygen will burn to produce tritium. This is true if we only consider one reaction tick, however the experienced among you know that you can get away with a 97-3 oxygen:plasma ratio and still get tritium. The reason for why this is is because of the oxygen burn rate being low enough that the oxygen replenishment rate rapidly ramps the concentration of oxygen to the point that the feed-in rate of plasma places the ratio of plasma to oxygen above the super saturation threshold. If this isn't clear enough, try understanding the following table:
Tritium is produced when plasma burns under a high concentration of oxygen, specifically, a threshold (known in the code as the super saturation threshold) 96 times more oxygen than plasma. For this reason, only a 1 unit of plasma mixed with 96 more units of oxygen will burn to produce tritium. This is true if we only consider one reaction tick, however the experienced among you know that you can get away with a 97:3 oxygen:plasma ratio and still get tritium. The reason for why this is is because of the oxygen burn rate being low enough that the oxygen replenishment rate rapidly ramps the concentration of oxygen to the point that the feed-in rate of plasma places the ratio of plasma to oxygen above the super saturation threshold. If this isn't clear enough, try understanding the following table:


{| class="wikitable"
{| class="wikitable"
Line 38: Line 38:
This table is not 100% accurate due to LINDA and other aspects of atmos that complicate the calculations, but demonstrates the point.
This table is not 100% accurate due to LINDA and other aspects of atmos that complicate the calculations, but demonstrates the point.


As you can see, plasma is always burned off at a rate of 1:1 with the oxygen, resulting in the plasma mole count remaining very low while oxygen keeps ramping up and increasing, eventually to the point that the ratio reaches the super saturation threshold and producing tritium. This applies to any atmos mix. This is very important because you can ramp up the plasma percentage of the feed in gasmix and still remain above the super saturation threshold. It is very common to have a mixture of 85-15 oxygen-plasma once a large amount of oxygen has accumulated inside the burn chamber, resulting in a tritium generation rate that is 5 times higher than the usual 97-3 ratio used by beginner atmosians. Peak atmosians generally start off with a lower concentration burn mix like 7-93, then switch to 15-85 after the reaction has been going on for a while to maximize the amount of time that the chamber spends above the super saturation threshold.
As you can see, plasma is always burned off at a rate of 1:1 with the oxygen, resulting in the plasma mole count remaining very low while oxygen keeps ramping up and increasing, eventually to the point that the ratio reaches the super saturation threshold and producing tritium. This applies to any atmos mix. This is very important because you can ramp up the plasma percentage of the feed in gasmix and still remain above the super saturation threshold. It is very common to have a mixture of 85:15 oxygen:plasma once a large amount of oxygen has accumulated inside the burn chamber, resulting in a tritium generation rate that is 5 times higher than the usual 97:3 ratio used by beginner atmosians. Peak atmosians generally start off with a lower concentration burn mix like 93:7, then switch to 85:15 after the reaction has been going on for a while to maximize the amount of time that the chamber spends above the super saturation threshold.


This phenomenon is dubbed the oxygen accumulation rate, or oxyrate for short, and can have very interesting results when tinkered with. Just as the oxyrate being positive results in a higher and higher O2:plasma chamber ratio, turning your oxyrate negative should lower the chamber ratio. You might wonder why this is desirable, but another optimization trick that is performed by peak atmosians is short duration negative oxyrate burns. This is performed when the accumulation of oxygen inside the chamber has gone on for so long that the engineer operating the system pushes up the plasma percentage to something insane like 40% plasma and 60% oxygen, burning away excess oxygen with a negative oxyrate burn while still remaining above the super saturation threshold and producing tritium. As long as the ratio remains above the super saturation threshold, this strategy is viable and more often than not results in large bursts of tritium being accumulated in the cooling vessel. Do note that this should only be performed with a high capacity cooling vessel.
This phenomenon is dubbed the "oxygen accumulation rate", or '''oxyrate''' for short, and can have very interesting results when tinkered with. Just as the oxyrate being positive results in a higher and higher O2:plasma chamber ratio, turning your oxyrate negative should lower the chamber ratio. You might wonder why this is desirable, but another optimization trick that is performed by peak atmosians is short duration negative oxyrate burns. This is performed when the accumulation of oxygen inside the chamber has gone on for so long that the engineer operating the system pushes up the plasma percentage to something insane like 40% plasma and 60% oxygen, burning away excess oxygen with a negative oxyrate burn while still remaining above the super saturation threshold and producing tritium. As long as the ratio remains above the super saturation threshold, this strategy is viable and more often than not results in large bursts of tritium being accumulated in the cooling vessel. Do note that this should only be performed with a high capacity cooling vessel.


===Oxyrate tricks and LINDA complications (Work in progress)===
===Oxyrate tricks and LINDA complications (Work in progress)===
Line 82: Line 82:
</div>
</div>


Remember that the roundstart injector in the incinerator is not maxed out, bottlenecking you if you forget to max it out.  
Remember that the roundstart injector in the incinerator is not maxed out, bottlenecking you if you forget to max it out.


==Nitryl==
==Nitryl==


Nitryl is not particularly interesting, the speedup murders your lungs and is best used in short bursts, but is not worth the time investment to manufacture. Stimulum however, a nitryl prerequisite, is far more valuable and may be worth it depending on your situation. The manufacturing of nitryl requires Nitrogen and Oxygen with some N2O catalyst and a large amount of heat. However, the conversion efficiency of nitryl scales upwards starting from the requisite 22500K, with most tritium burns under active water vapor scrubbing barely reaching the requisite temperatures and if they do, the conversion efficiency is so low the reaction proceeds far too slowly for batch production. For this reason, nitryl is unique in that it does not technically require to manufacture, but mass production requires it. As a result, it is generally advisable to reserve a slot of your sequestral heat exchange pipes for the nitryl, alongside the fusion can and hypernoblium.
Nitryl is not particularly interesting, the speedup murders your lungs and is best used in short bursts, but is not worth the time investment to manufacture. Stimulum however, a nitryl prerequisite, is far more valuable and may be worth it depending on your situation. The manufacturing of nitryl requires Nitrogen and Oxygen with some N2O catalyst and a large amount of heat. However, the conversion efficiency of nitryl scales upwards starting from the requisite 22500K, with most tritium burns under active water vapor scrubbing barely reaching the requisite temperatures and if they do, the conversion efficiency is so low the reaction proceeds far too slowly for batch production. For this reason, nitryl is unique in that it does not technically require to manufacture, but mass production requires it. As a result, it is generally advisable to reserve a slot of your sequestral heat exchange pipes for the nitryl, alongside the fusion can and hypernoblium.
System Operators, Wiki Staff
833

edits